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The occurrence of an incident is one of the main causes of traffic congestion and delay on urban freeways. Currently, the development of an
efficient traffic incident management process is an emerging issue in intelligent transport systems.

The focus of this study is to develop an incident response model for use in an incident management program designed to reduce incident
related traffic congestion and delays. Establishing a fuzzy control system based on a real operation process of incident response would help de-
crease the workload of operators who are constantly making essential decisions, and would be helpful in developing a more reliable operation proce-
dure. Traffic incident data obtained from traffic detectors and information systems on freeways should be considered in order to determine the best
form of operation.

In this study, a fuzzy incident response model is formulated in terms of incident, type of vehicle, type of incident vehicle, location of incident
vehicle, and incident service time. In order to analyze the reliability of the proposed model, the application of the model is made using the actual
incident data collected on the freeway in the Los Angeles area. The application of the model shows that the fuzzy incident response system is very
effective in describing the actual judgment of the incident operators in terms of incident service time.
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1. INTRODUCTION

Traffic congestion is a daily phenomenon in most
metropolitan areas, and has negative effects on traffic
safety, mobility, and productivity of the transportation
system. Congestion is creating bottlenecks on the free-
way system and poses serious problems in urban areas.
Freeway congestion is made up of two components such
as recurring congestion and non-recurring congestion.
Recurring congestion is predictable and occurs in loca-
tions where the traffic volumes routinely exceed capac-
ity. Non-recurring congestion is very unpredictable and
is caused by incidents.

Incidents can be defined as traffic accidents, dis-
abled vehicles, spilled loads, and other random events that
reduce the freeway capacity at a specific location. The
development of an effective traffic incident management
process on freeways has become an important part of
transportation system operation. The objective of any in-
cident management strategy is to clear up incidents

quickly. Freeway incident management involves a sys-
tematic process including incident detection, response,
clearance, and recovery to normal traffic conditions. The
effectiveness of an incident management program can be
evaluated by the amount of reduced time interval between
incident occurrence and incident clearance.

The overall duration of an incident depends on the
essential incident response service time. The incident re-
sponse services involve dispatching, responder availabil-
ity, responder readiness, responder travel distances,
incident scene access, communication, traffic manage-
ment, preplanning and interagency agreements, etc. These
services require a significant role of incident operators in
order to make decisions in an uncertain incident situation.
Uncertainty is the main characteristic of traffic incidents
in terms of incident type, location, time, etc.

Uncertainty management is one of the most signifi-
cant characteristics in the decision making process of
fuzzy logic. Human thinking is qualitative, and based on
linguistic terms. Fuzzy logic allows ill-measured infor-
mation to incorporate the experience of a human process
operator into the design of the controller. Fuzzy control
approaches can easily replicate a controller working un-
der multiple objectives, such as safety, efficiency, and
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stable operation, etc.
In this regard, the purpose of this study is to for-

mulate the Fuzzy Incident Response Model to show that
the fuzzy incident response system is effective in describ-
ing the actual judgement employed in incident operating.
In addition, the application of the model has been made
using freeway incident data in order to verify the effec-
tiveness of the model.

2. FUZZY INCIDENT RESPONSE PROCESS OF
URBAN FREEWAYS

Incident management consists of two distinct com-
ponents: emergency response and traffic response. The
emergency response component includes those actions
taken by law enforcement and emergency responders who
are directly related to resolving the incident and ensur-
ing public safety. The traffic response component in-
cludes those actions taken to mitigate the effects of an
incident or emergency response both during and after in-
cident occurrence. These activities include road closure,
detour routing, and ramp metering, etc.

In a general control setting, incident detection and
verification requires a freeway traffic surveillance system.
This system may vary depending on traffic volume, oc-
cupancy, and speed, etc. Freeway incidents may be de-
tected by passing travelers (motorists), freeway patrol, or
other sources. If an incident is detected by these respond-
ers, it is instantly verified in terms of its location and de-
scription. For example, if an incident has been reported
by motorists at the incident site, the incident operator can
quickly verify this report. There is no need to screen out
false alarms. Therefore, incident operators are presented
with incidents to confirm actions based on a fuzzy sys-
tem.

2.1 Fuzziness of freeway incident management
The development of current freeway traffic manage-

ment systems is opening many new opportunities for en-
hanced control strategies involving the traveler, vehicle,
and highway. Freeway traffic management systems tech-
nology has several components, such as freeway traffic
surveillance and control systems, changeable message
signs (both fixed and portable), ramp signals, freeway ser-
vice patrol, highway advisory radio, and call box hotlines.

The management of incidents is one of the major
challenges in freeway traffic operations, requiring con-
stant attention and considerable investment. Incident man-

agement requires quick and accurate judgment in order
to restore the affected area and its surrounding network
to normal traffic conditions as quickly as possible. Sev-
eral methods are currently employed for incident man-
agement and automatic incident management techniques
are becoming increasingly important for the reduction of
traffic delay time caused by incidents.

Freeway incident management deals with various
activities of multiple agencies, and the incident manage-
ment is performed by human operators who consider the
various environmental conditions on the freeway. In this
regard, uncertainty is the main characteristic of freeway
incident management in terms of incident location, time,
type, duration, and vehicle type, etc. For example, the de-
tail of incident data collected on the freeway such as the
incident type of vehicle (vehicle fire, flat tire, abandoned,
mechanical problem, etc.) may hardly be classified.

Currently, many kinds of traffic data are collected
during actual freeway incidents. For example, pavement
detectors are installed near ramps and along freeway
mainlines at 0.5 mile intervals. Generally, the detectors
can measure traffic volume, occupancy, and speed. There-
fore, data of the queue length is obtained at 0.5 mile in-
tervals. If the actual traffic queue length is 2.2 miles, the
incident operator can only obtain traffic information from
the queue length interval of 2 miles to 2.5 miles, approxi-
mately 2 miles linguistically. Therefore, it is very diffi-
cult to obtain accurate traffic flow related data such as
traffic volume, occupancy, speed, queue lengths, travel
times, etc. In addition, the detailed classification of inci-
dent type is very complicated (e.g., disablement, injury
accident, non-injury accident, detector malfunction, ramp
signal malfunction, etc.).

Table 1 shows an example of the freeway patrol sur-
vey incident data categories collected on the Los Ange-
les freeways in 1995. The data describes the incident type
of vehicle, the type of incident vehicle, and the location
of incident vehicle. As shown in the Table 1, the detailed
information of incident is not reported to the incident
management center.

Considering the characteristics of freeway incident
and data collecting system, the solution of incident man-
agement problems may not be found solely in numerical
algorithms, but rather in the application of algorithmic
tools guided by human experts using their knowledge and
experiences. When an incident is detected, the operator
must carry out various procedures to respond to the inci-
dent. It is very difficult to improve the incident manage-
ment process because the actual judgement process of the
incident operators cannot be described clearly. In order
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to solve these problems, it is necessary to formulate the
actual judgement procedure of the incident operators and
to develop an automatic decision-making system which
is capable of taking the place of the incident operators.

Uncertainty management is one of the most signifi-
cant characteristics in the decision making process of
fuzzy logic. Hence, the application of fuzzy systems
emerges as a suitable solution to the incident management
problem. Fuzzy systems approach may also be used to
study detailed traffic control operator behavior in the con-
text of an incident management environment.

After incident detection and verification have been
accomplished, a fuzzy system can be applied to the inci-
dent response system. For example, Table 2 below shows
three input and one-output variables in fuzzy terms. These
variables are derived from an incident operator, and the
responses can be selected and recommended by the fuzzy
system. The improvement of incident response strategies
affects the incident service time interval from occurrence
to clearance. The overall incident duration is controlled
by the essential incident response services and the fuzzy
system describes more effective freeway incident man-
agement by obtaining appropriate service time to the
scene of an incident.

2.2 Previous research
The literature on fuzzy systems has been rapidly ex-

panding in a wider field. In the field of transportation,
fuzzy systems have been applied to the areas of planning,
control, and operations. However, an application of fuzzy
systems has been focused on the areas of traffic signal
control and traffic operation. Therefore, an application of
a fuzzy system to the incident management area may still

be at an early stage.
Fuzzy logic is an extension of conventional logic,

and deals effectively with the decision maker’s percep-
tion of uncertainty, ambiguity, and vagueness. The vague
boundary of the set can be identified by fuzzy sets, which
enable the analysis of problems including uncertainty and
ambiguity1.

The use of a fuzzy controller for traffic signals at a
single intersection of two one-way streets was considered
by Pappis and Mamdani2. They concluded that the fuzzy
controller enables further reduction in vehicle delay times
than the conventional vehicle-actuated controller. The
central idea is that the fuzzy control statements can eas-
ily be converted into a decision matrix system. Chen et
al.3 presented an application of fuzzy controller to free-
way ramp control at the San Francisco-Oakland Bay
Bridge. In their study, the results after the application of
the fuzzy controller were compared to that of the exist-
ing automatic controller. They examined the six linguis-
tic variables, such as congestion level, change in
congestion level, control area, incident, non-incident, and
size of control area queue. The testing process of the
fuzzy controller presented a possible 40 to 100% savings
in passenger-hours.

Another freeway ramp control problem was dis-
cussed by Brubaker and Sheerer4. Their fuzzy logic sys-
tem was designed in four stages in order to describe
problems and decide fuzzy actions such as: (i) identify-
ing system inputs (speed and density) and the fuzzy range
of the inputs (e.g., slow, medium, fast), and establishing
a degree of membership functions for each range; (ii)
identifying outputs (green light and red light) and the
fuzzy range of outputs (e.g., short, medium, long), and
establishing a degree of membership functions; (iii) iden-
tifying the fuzzy rules that map the inputs to the outputs;
and (iv) deciding on a method of combining fuzzy ac-
tions into a single, crisp system output. This design mini-
mized the impact of the inflow traffic onto the prevailing
freeway traffic. Also, this study shows that the fuzzy con-
trol algorithm is very effective in reducing congestion of
freeway traffic flow.

Lotan and Koutsopoulos5 presented the framework
for modeling route choice behavior under the provision
of real-time traffic information using the concepts of
fuzzy set theory, approximate reasoning, and fuzzy con-
trol. They used linguistic rules of the form “IF-THEN”
to model the decision process. The rules described atti-
tudes towards taking a special route given perceptions
(possibly vague) on network attributes. Perceived travel
time and traffic information were assumed to be the most

Table 1  Example of freeway incident related data*

Incident Description

Incident Type Accident, Vehicle fire, Abandoned,
of Vehicle Debris removal

Flat tire, Mechanical problem, Electrical
problem, Over-heated

Out of gas, Locked out

Type of Incident Big rig, Truck, Bus

Vehicle Van, Pickup

Auto, Motorcycle

Location of In freeway lanes

Incident Vehicle On left shoulder, On right shoulder

On a ramp

* Note : These variables were considered by the Freeway Service Patrol
Survey Data (Motorist Assist Form) in Los Angeles, USA, 1995
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important factors in the route choice process. Then the
fuzzy logic route choice model was tested using data from
driver simulators. The results presented that human per-
ceptions can be modeled more naturally using linguistic
terms and that human behavior can also be modeled more
realistically using flexible linguistic rules.

A variety of applications have been tried to evalu-
ate the benefits of fuzzy logic in control systems. One
important feature that fuzzy systems incorporate is that
of explanation prediction. A concept of fuzzy logic used
in fuzzy verification indicates the membership degree to
which we can consider to be a prediction of the system.

3. DEVELOPMENT OF A FUZZY INCIDENT
RESPONSE MODEL

A fuzzy system model is based on the concepts of
input, process structure, and output flow. Fuzzy system
models fundamentally fall into two important categories,
which differ basically in terms of their ability to repre-
sent different types of information. One of the main di-
rections in fuzzy systems is the linguistic approach, based
on linguistically described models. The linguistic model
depends on the existence of a rule-base and the theory
of approximate reasoning. In this study, the linguistic
model is extended to the multiple-input, single-output
(MISO) form as a tool for complex fuzzy systems.

3.1 Classification of input/output linguistic variables
of a fuzzy system
As shown in Table 2, three inputs can be defined

in the fuzzy incident response model based on Table 1:
(i) incident type of vehicle (accident, vehicle fire, aban-
doned, debris removal, flat tire, mechanical problems,
electrical problems, over-heated, shortage of gas, and
locked out); (ii) the type of vehicle involved in the inci-
dent (big rig, truck, bus, van, pickup, auto, and motor-
cycle); and (iii) the location of the incident vehicle on the
highway (in freeway lanes, on left shoulder, on right
shoulder, and on a ramp). It is assumed that an incident
operator considers the volumes of all of the inputs. For
example, ten incident type of vehicle problems may be
classified separately into three categories (Small, Me-
dium, and Large) according to each problem the incident
vehicle is experiencing. These input variables are repre-
sented by the corresponding three categories as member-
ship functions.

The outputs of the fuzzy system model determine
the time of incident manager’s response and the time of
incident service. The time of incident service is treated
in this model as a fuzzy variable. Five categories of inci-
dent service time such as very short, short, medium, long,
and very long are represented by appropriate fuzzy sets.

In the fuzzy system, the membership function gives
the membership degree (µ) and represents a value from
0 to 1. The membership functions for inputs (SM = Small,
ME = Medium, and LA = Large) and outputs (VS = Very
Short, SH = Short, ME = Medium, LO = Long, and VL =

Table 2  Categories of three input-one output variables for fuzzy terms

Input / output variables Fuzzy terms

Incident Type of Accident, Vehicle fire, Abandoned, Debris removal Large (LA)
Vehicle (IT) Flat tire, Mechanical problem, Electrical problem, Over-heated Medium (ME)

Out of gas, Locked out Small (SM)

Type of Incident Big rig, Truck, Bus Large (LA)

Input Variables Vehicle (IV) Van, Pickup Medium (ME)

Auto, Motorcycle Small (SM)

Location of Incident In freeway lanes Large (LA)
Vehicle (IL) On left shoulder, On right shoulder Medium (ME)

On a ramp Small (SM)

Very long (VL)

Long (LO)

Output Variable Incident Service Time (ST) Medium (ME)

Short (SH)

Very short (VS)
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Very Long) are shown in Table 2. These inputs/outputs
can be used to predict the freeway incident service time.

3.2 Fuzzy rule base
The fuzzy system is a kind of expert knowledge-

based system that contains the control algorithm in a
simple rule-base. The fuzzy rule base maps the combi-
nation of the inputs to the outputs to decide whether and
how to respond to the incident. In the fuzzy system, en-
coded knowledge is expressed by IF-THEN statements.

The number of rules is equal to the number of in-
put combinations derived from the number of member-
ship functions per input. For instance, if there are three
inputs, each having three membership functions, then the
number of fuzzy rules would equal to twenty-seven
(3×3×3), as given in Table 3.

In this study, the term sets of the input variables of
the incident type, incident vehicle, and locations of the
disabled vehicles, include the linguistic labels “Small
(SM)”, “Medium (ME)”, and “Large (LA)”. Similarly,
the term sets of the output variables of the incident ser-
vice time “ST” include the linguistic labels “Very Short

(VS)”, “Short (SH)”, “Medium (ME)”, “Long (LO)”, and
“Very Long (VL)”. Considering the above fuzzy terms
of input/output incident variables, the fuzzy freeway in-
cident response model can be formulated by the multiple-
input and single- output (MISO) system.

3.3 Fuzzy algorithm for freeway incident response
Zadeh6,7,8 developed the idea of formulating fuzzy

control algorithms by logical rules. Mamdani and
Assilian9 and Mamdani10 discussed Zadeh’s concept
whereby logical rules with vague predicates can be used
to derive inference from vaguely formulated data. A fuzzy
control algorithm for multivariable systems proposed by
Sanchez11 and Gupta et al.12 suggested a solution of mul-
tivariable fuzzy control systems.

The analysis and synthesis of a multivariable struc-
ture is an important problem in fuzzy control systems. In
the multiple-input and single-output systems, the encoded
knowledge can be expressed by IF-THEN rules. Since our
incident management system has three inputs and one
output, the fuzzy system formulation is:

Table 3  Fuzzy rules

Rule Incident type (IT) Incident vehicle (IV) Incident location (IL) Service time (ST)

  1 Small (SM) Medium (ME)
  2 Small (SM) Medium (ME) Long (LO)
  3 Large (LA) Short (SH)

  4 Small (SM) Very short (VS)
  5 Small (SM) Medium (ME) Medium (ME) Short (SH)
  6 Large (LA) Very short (VS)

  7 Small (SM) Short (SH)
  8 Large (LA) Medium (ME) Medium (ME)
  9 Large (LA) Very short (VS)

10 Small (SM) Long (LO)
11 Small (SM) Medium (ME) Very long (VL)
12 Large (LA) Medium (ME)

13 Small (SM) Short (SH)
14 Medium (ME) Medium (ME) Medium (ME) Medium (ME)
15 Large (LA) Very short (VS)

16 Small (SM) Medium (ME)
17 Large (LA) Medium (ME) Long (LO)
18 Large (LA) Short (SH)

19 Small (SM) Very long (VL)
20 Small (SM) Medium (ME) Very long (VL)
21 Large (LA) Long (LO)

22 Small (SM) Medium (ME)
23 Large (LA) Medium (ME) Medium (ME) Long (LO)
24 Large (LA) Short (SH)

25 Small (SM) Long (LO)
26 Large (LA) Medium (ME) Very long (VL)
27 Large (LA) Medium (ME)
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IF U1 is A(1)1
 and U2 is A(1)2

 and U3 is A(1)3

   THEN V1 is B(1)1

    ALSO
      ...
     ALSO
IF U1 is A(i)1

 and U2  is A(i)2
 and U3 is A(i)3

......... (1)
     THEN V1 is B(i)1

     ALSO
      ...
     ALSO
IF U1 is A(27)1

 and U2 is A(27)2
 and U3 is A(27)3

     THEN V1 is B(27)1
.

In the fuzzy system formulation (1), the input vari-
ables U1, U2, and U3 are the incident type of vehicle, the
type of incident vehicle, and the location of the incident
vehicle, respectively. Incident service time V1 is the out-
put variable of the fuzzy control process. A(i)1

, A(i)2
, A(i)3

given the crisp ranges of input for each of the fuzzy vari-
ables such as large, medium, and small. Output fuzzy
term B(i)1

 is expressed as very long, long, medium, short,
and very short, where i denotes the rule number i=(1,
...,27). These terms are linguistic values (levels) repre-
sented as fuzzy subsets of the respective universe of dis-
course X1, X2, X3, and Y1.

In the case of single-input and single-output fuzzy
rule (IF U is Ai THEN V is Bi), the fuzzy relation Ri is
interpreted as a fuzzy intersection of the fuzzy sets Ai and
Bi:

Ri = Ai∩Bi ........................................................... (2)

Ri is defined on the Cartesian product space X × Y,
and is characterized by a membership function µR :

Ri (x, y) = Ai(x) Bi(y)
and
µR × Y → [0,1] .................................................. (3)
where ‘ ’ is the min-operator (or intersection op-

erator).

Fuzzy relation Ri associated with the individual re-
lations is aggregated using fuzzy union:

R = ∪
i=1

Ri ............................................................. (4)

The membership function of the fuzzy relation R is:

µR(x,y) = ∨ iRi(x,y) = ∨
 i=1

Ri(x,y) =
∨
i=1

(Ai(x) Bi(y)) ................................................. (5)

where ‘∨ ’ is the max-operator. Therefore, for a
given fuzzy relation R from U to V and for given fuzzy
values of the input A, the fuzzy output B is defined by
the max-min compositional rule of inference with union
operators:

B = AoR = AoR( ∪
i=1

) = ∪
i=1

(AoRi)
 or
µB(y) = max{min(µA(x),µR(x, y))} ..................... (6)
                       x

where the symbol ‘o’ represents a general method
for max-min composition of fuzzy relations. This idea can
be extended to multiple-input, single-output fuzzy sys-
tems. The multivariable linguistic description (1) is ex-
pressed as a fuzzy relation Ri

j which is interpreted as the
conjunction of the respective reference fuzzy sets:

Ri
j = Aij∩Bi

k ........................................................ (7)

where i denotes the rule number (i = 1, ...,n), j de-
notes the input variables (j = 1,2,3), and k denotes the out-
put variable (k = 1). By applying the rule of inference (6)
to each of the subsystems of the three-input one-output
system, the output B1 is obtained as follows:

                  n

B1 = ∪
i=1

(A1, A2, A3)o Ri
j ....................................... (8)

An analogue to the theory of linear systems, B1 can
be expressed in the following form of fuzzy equation

B1 = A1o Ri
1  A2 o Ri

2  A3 o Ri
3 ........................ (9)

Here R is the three-dimensional fuzzy matrix; B1is
the one-dimensional fuzzy output; and these are decom-
posed into three one-dimensional fuzzy matrices (i.e., Ri

1,
Ri

2, Ri
3) and one-dimensional fuzzy output B.
Using the vector-matrix notation, the set of fuzzy

equations in (10) permits a simplified decomposed ex-
pression for the individual output B of the multiple vari-
able (three-input, one-output) fuzzy control system:

 
                   n

Ri
1

[B] = ∪
i=1

[A1 A2 A3]* Ri
2 ............................... (10)

Ri
3

where the symbol ‘*’ is the operator (o, )
Generally, the membership function of B can be cal-

culated by the max-min operation. Then the maximum
of B determines the final output B. In this case, we can
assume that the first and subsequent rules can be decom-
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posed into j separate sub-relations (see equation 7). To
obtain the overall jth sub-rule, we can unite all contribu-
tions (see equation 4):

R j = ∪
i=1

Ri
j .......................................................... (11)

or, by replacing the union operators with fuzzy max
operators:

R j = max{R1
j(xj, y), R2

j(xj, y),…,Rn
j(xj, y)} ........ (12)

where x ∈ A and y ∈ B.
In this study, the final output B related to a set of

three inputs (A1,A2,A3) can be obtained using the max-
min operation of all three (j = 1,2,3) relations among the
three inputs and the relations R1, R2, and R3.

Bi = A1 o Ri
1, A2 o Ri

2, A3 o Ri
3 ............................ (13)

where ‘o’ denotes the usual max-min composition.
In a more explicit equation form,

B = max[min{A1, R1(x1, y)}, min{A2, R2(x2, y)},
min{A3, R3(x3, y)}] ................................... (14)

where B = max[Bi].
Therefore, the corresponding membership function

is defined as follows:

µB(y) = max min{µA1(x1) × µA2(x2) × µA3(x3),
µR(x1, x2, x3, y)} .................................. (15)

x1 ∈  A1, x2 ∈  A2, x3 ∈  A3

Let this fuzzy clause be R. The membership func-
tion of fuzzy clause R is given by:

µR = max{µB1(x1, x2, x3, y), µB2(x1, x2, x3, y),…,
µB27(x1, x2, x3, y) ....................................... (16)

Then the maximum of Bi (i = 1, ...., 27) determines
B, which is calculated as a union:

               27

B = ∪
i=1

Bi = max(B1, B2, …, B27) ...................... (17)

Finally, defuzzification of the output is an opera-
tion that produces a non-fuzzy output action, a single
crisp value B*, that adequately represents the membership
function µagg(B) of an aggregated fuzzy output. In this
study, we describe the defuzzification method called
mean of maximum (MOM) method which is simple to

apply. We define B* as the midpoint of the incident ser-
vice time [T1, T2], that is,

B* =
 T1 + T2 ..................................................... (18)

             2
The three-input, one-output fuzzy system shows

how to evaluate the contribution of each component to
the overall performance of the system. The block diagram
allows a readily visual examination as compared to the
linguistic system.

4. APPLICATION OF THE MODEL

4.1 Study area and data
This section presents the test results of the freeway traf-

fic incident service time algorithm using fuzzy logic. In this
study, the freeway incident data collected by the Freeway Ser-
vice Patrol (FSP) tow truck drivers is applied to the model.

The Los Angeles FSP is the largest dedicated truck
patrol program in the USA. The FSP is a joint program
of the California Department of Transportation (Caltrans),
the California Highway Patrol (CHP), and the Los An-
geles Metropolitan Transportation Authority (MTA). The
FSP has 164 tow trucks provided by 20 towing contrac-
tors patrolling 40 beats with a coverage of 393 centerline
miles of freeway in Los Angeles county.

The study area covers 16 miles of the Los Angeles
county including the Santa Monica Freeway (I-10), and
the area between Bundy Drive on the west and Route 60
at 3rd Street on the east. Two north-south freeways, the San
Diego Freeway (I-405) and the Harbor Freeway (I-110),
cross the study area. This area nearly coincides with the
Los Angeles Smart Corridor project area.

Highway incident related data were collected for 62
weekdays (between January 3, 1995 and March 31, 1995,
except holidays), generally from 6:00 to 10:00 a.m. and
from 2:30 to 7:00 p.m. and 2,457 incident cases were
taken into consideration13.

Table 4 shows actual data where survey observa-
tion was carried out on the Santa Monica (I-10) Freeway
in Los Angeles. Three incident characteristics were used
to evaluate the incident databases: (1) ten incident types
of vehicle; (2) seven types of incident vehicle; and (3)
four locations of incident vehicle.

As shown in Table 4, mechanical problem is the
most frequent incident among the type of incident. Also,
Auto and right shoulder are the most frequent incident
vehicle type and location, respectively.
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4.2 Application results and analysis
In this application, since each fuzzy rule is repre-

sented by a four-dimensional array, the fuzzy algorithm
employed for the three incident characteristics in order
to determine the incident service time which is repre-
sented by the 27 fuzzy rules (see Table 3). The three-di-
mensional input corresponding to the one-dimensional
output on the incident service conditions is shown in
Table 3. For the initial rule matrix, we define the rules
to be the intuitive rules resulting from the trivial map-
ping between the three linguistic label (i.e., SM, ME, and
LA) inputs and five linguistic label (i.e., VS, SH, ME,
LO, and VL) outputs.

The establishment of the fuzzy relationship is im-
portant. In this study, the time of incident service is de-
fined according to incident type (IT), incident vehicle type
(IV), and disabled vehicle location (IL). The input given
by the user consists of several linguistic variables for cer-
tain criteria. For example, “if the degree of incident type

 Table 4  Incident survey data of freeway

(1) Incident Type of Vehicle No. of Incidents (%)

Accident 194 (7.9)

Vehicle fire 9 (0.4)

Abandoned 208 (8.5)

Debris removal 18 (0.7)

Flat tire 509 (20.7)

Mechanical problem 595 (24.2)

Electrical problem 319 (13.0)

Over-heated 197 (8.0)

Out of gas 405 (16.5)

Locked out 3 (0.1)

Total 2,457 (100)

(2) Type of Incident Vehicle No. of Incidents (%)

Big rig 18 (0.7)

Truck 63 (2.6)

Bus 27 (1.1)

Van 227 (9.2)

Pickup 341 (13.9)

Auto 1,769 (72.0)

Motorcycle 12 (0.5)

Total 2,457 (100)

(3) Location of Incident Vehicle No. of Incidents (%)

In freeway lanes 396 (16.1)

On left shoulder 118 (4.8)

On right shoulder 1,841 (74.9)

On a ramp 102 (4.2)

Total 2,457 (100)

is small, and the type and location of incident vehicles is
small, then the duration time of incident is medium” is a
fuzzy linguistic model, which has three input and five
output linguistic variables. The membership functions of
these linguistic values are calculated and formulated by
a fuzzy incident response model. In the final step, the out-
put is the defuzzification operation which produces a non-
fuzzy output action.

The crisp range for incidents’ service time fuzzy
variables (very short, short, medium, long, very long) are
shown in Table 2. If incident service time is interpreted as
a linguistic variable, then its term set ST (incident service
time) could be ST = (Very Short, Short, Medium, Long,
Very Long) where each term in ST is characterized by a
fuzzy set in a universe of discourse U(time) = [0,50]. We
might interpret “very short” as “a time below about 5
minutes,” “short” as “a time close to 15 minutes,” “me-
dium” as “a time close to 25 minutes,” “long” as “a time
close to 35 minutes,” and “very long” as “a time above
about 45 minutes.” Similarly, incident types, incident ve-
hicles, and incident locations are considered by a fuzzy
set in a universe of discourse U(percent) = [0,100].

The first fuzzy rule (see Table 3) is
IF IT = small

and IV = small
and IL = small

THEN ST = medium
IF µ small(1) = 0

µ small(5.5) = 0
µ small(10.3) = 0.5

THEN µmedium(25) = 0.9.

Thus
µR1

 (1,5.5,10.3,25) = min {µ small(1), µ small(5.5),
µ small(10.3), µmedium(25)} =
min{0,0,0.5,0.9} = 0

and we decide the maximum value of 27 fuzzy rules
as a union (see equation 17).

B = max{0,0,0,0,0,0,0,0,0,0.4,0.4,0.4,0.4,0.4,0.4,
0.4,0.4,0.4,0,0,0,0,0,0,0,0,0} = 0.4.

Similarly a total of nine variables (small incident
type rating, medium incident type rating, large incident
type rating, small incident vehicle rating, medium inci-
dent vehicle rating, large incident vehicle rating, small
incident location rating, medium incident location rating,
and large incident location rating) are calculated and for-
mulated by membership functions.
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A total of 9 maximum values are applied to fuzzy
membership functions to calculate incident service time,
by determining the membership functions corresponding
to the incident service time for each maximum value.
They are defined as 9 membership degrees (µ), that is,
three inputs (small; µ = 0, medium; µ = 0.5, and large; µ
= 1) and five outputs (very short; µ = 0, short; µ = 0.25,
medium; µ = 0.5, long; µ = 0.8, and very long; µ = 0.9).

Figure 1 shows plots of observed values (a) and
model value (b) of incident service time in terms of the
type of incident vehicle (IV) and incident type of vehicle
(IT). In the figure, the X axis (IV) and Y axis (IT) are
independent variables and represent the type of incident
vehicle and the incident type of vehicle, respectively.
However, the Z axis is a dependent variable and repre-
sents the incident service time (ST). This figure shows

(a) Observed Value (IV-IT)

Fig. 1 Comparative plots of incident service times of observed value (a) and model  value (b) : IV - Type of Incident
Vehicle, IT - Incident Type of Vehicle

(b) Model Value (IV-IT)

(a) Observed Value (IL-IT)

Fig. 2 Comparative plots of incident service times of observed value (a) and model  value (b) : IL - Location of
Incident Vehicle, IT - Incident Type of Vehicle

(b) Model Value (IL-IT)

the comparison of distribution between the actual data and
the model values using three-dimensional space. In or-
der to represent the application results of the fuzzy inci-
dent model using three-dimensional space, two independent
input variable combinations can be considered in the
model.

As shown in Figure 1, the observed value (a) shows
the distribution of incident service time using point mark-
ers and the model value (b) shows the distribution of ser-
vice time using surface plot. Considering the distribution
of the model values, we could conclude that the results
of the model were in extremely good agreement with ob-
served data.

Figure 2 shows plots of observed value (a) and
model value (b) of incident service time in terms of the
location of incident vehicle (IL) and the incident type of
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vehicle (IT). Also, Figure 3 shows plots of observed value
(a) and model value (b) of incident service time in terms
of the location of incident vehicle (IL) and the type of
incident vehicle (IV).

As shown in Figure 2 and Figure 3, the observed
value (a) shows the distribution of incident service time
using point markers and the model value (b) shows the

distribution of service time using surface plot. Consider-
ing the distribution of model values, we could also con-
clude that the results using the model were in extremely
good agreement with the observed data.

In addition, we apply three independent input vari-
ables (incident type of vehicle, type of incident, location
of incident) to the fuzzy incident response model. Al-
though we cannot represent the results using three-dimen-
sional space, Table 5 shows that the estimated value of
the model is in the range of 0.3 minutes of the observed
data (average error of estimated value is 0.3 minutes). In
other words, while the average value of observed inci-
dent service time is 15.7 minutes, the estimated value is
in the range of 15.4 and 16.0 minutes. Considering these
results, the model gives an accuracy of 98.1% for pre-
dicting the incident service time (ST) and we can con-
firm the reliability of the proposed fuzzy incident response
model.

In this study, the application of the proposed three
input variables may be unrealistic to consider the free-
way incident situations. Therefore, further research con-
sidering the traffic volume as an input variable for
incident service time is necessary. However, this appli-
cation shows the effectiveness of fuzzy incident response
in describing incident service time.

5. CONCLUSIONS

In this study, a fuzzy incident response model is
proposed to show that the model is effective in describ-
ing the actual judgement employed in incident operating.
In addition, an application of the model has been made
in order to verify the effectiveness of the proposed model.
The results show that the fuzzy system is an effective
method for freeway incident management, by getting ap-
propriate responses to the scene of an incident. The per-
formance of the fuzzy system model for freeway incident
management can be summarized as follows:
(1) The ability of the fuzzy system model to replace the

(a) Observed Value (IL-IV)

Fig. 3 Comparative plots of incident service times of
observed value (a) and model value (b) : IL -
Location of Incident Vehicle, IV - Type of Incident
Vehicle

(b) Model Value (IL-IV)

Table 5  Estimation results of the incident service time

Incident Average Incident Service Time Model Value
(observed value)

Incident Type of Vehicle 15.5 minutes Minimum Average Incident Service Time : 15.4 minutes

Type of Incident Vehicle 15.6 minutes Maximum Average Incident Service Time : 16.0 minutes

Location of Incident Vehicle 16.0 minutes (Error =  ｱ0.3 minutes = 18 seconds)

Total Average Value 15.7 minutes 15.4 ̃ 16.0 minutes
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judgement and decision process of human operators
in freeway incident management was introduced.

(2) The estimated results of the incident service time in
the fuzzy system model show that the model fits the
actual incident service time data well.

One of the major limitations of this study relates
to the underlying problems in the development of the
fuzzy incident response model. Underlying problems
which must be improved for more practical use of the
model are:
(1) Only three inputs and one output variables are con-

sidered in the model. The model does not consider
most incident related factors. The traffic volume, the
time of day (day or night), the day of the week,
weather, and the conditions of the freeway may be
important factors for freeway incident management.

(2) The structure of the fuzzy incident response model
is not constructed for creating optimal traffic condi-
tions. Some parts of the model structure, such as the
production rule, the shape of the membership func-
tion, and the transformation of the fuzzy distribution
into real freeway traffic conditions should be consid-
ered.

However, the most typical point of fuzzy system is
to be able to change the structure of the model, such as
the definition of fuzzy variables, selection of variables,
and formation of fuzzy control rules. Also, the importance
of the fuzzy incident response model will be realized to
have more practical use when further investigation about
the actual freeway traffic condition has been done.
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