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This paper tests the usefulness of a multilevel model (MLM) for explaining the spatial occurrence of road accidents; it also shows and confirms
how far the characteristics of the geographical environment influence the location and concentration of road accidents at two levels of spatial aggre-
gation. The results are compared to those obtained from a more classical logistic regression. The analysis is performed on the southern periphery of
Brussels (Belgium). The main conclusions are: (1) that MLM is a potentially useful technique for modelling road accidents, but that hierarchical levels
are not easy to define for spatial data and so MLM are less useful than other regression techniques for modelling spatial occurrences of road acci-
dents; (2) that the characteristics of the environment and the road itself significantly influence the occurrence of road accidents, and changes in these
characteristics are quite important elements in the explanation, leading to the suggestion that road users do not adapt their behaviour sufficiently to
changes in road conditions. Hence, concentrations of road accidents often correspond to places where improvements could be made in terms of road
design, signalling and land-use planning.

Key Words: Multilevel model, Geography, Environment, Accidents, Brussels

1. INTRODUCTION

The main research objective of our team is to
analyse the spatial aspects of road-accident occurrence at
several scales of analysis1-4. The present contribution
aims at modelling the spatial occurrence of road accidents
by considering different nested levels of spatial data ag-
gregation.

Multilevel analysis is a recent technique that en-
ables the relationships/interactions between variables at
several levels of data aggregation to be examined simul-
taneously5,6. It attempts to solve the dilemma of the spa-
tial scale, that is to say the use of scales in analysing the
characteristics of accidents at a local level, taking into
account the broader spatial context in which these acci-
dents occur. Up to now, applications have mainly been
limited to the social and behavioural sciences. Let us
mention here the well-known example of school test re-
sults, which can be explained by the individual charac-
teristics of the scholars, but also by the characteristics of
the class (group) as well as the school or even its envi-
ronment7. Multilevel models are specifically dedicated to
the concept of the integration of contextual effects and
so to hierarchical models6,8,9. In spatial analysis, multi-

level models enable the researcher to go beyond the scale
defined a priori by territorial executives (for example),
and to attempt to capture the continuous character of
space, taking into account the nested nature of spatial
scales6,10.

In the field of road safety, two recent papers have
used multilevel modelling. Jones and Jorgensen11 con-
sider road accident casualties, and show that the risk of
fatality is associated with casualty age and sex, as well
as the type of vehicles involved, characteristics of the
impact, attributes of the road section on which it took
place, time of day, and whether alcohol was suspected.
The multilevel analysis shows that 16% of the unex-
plained variation in casualty outcomes was between ac-
cidents, whilst approximately 1% was associated with the
area in which each incident occurred. Gee and Takeuchi12

analyse the cross-sectional relationship between traffic
stress and neighbourhood conditions, depression and
health status by means of multilevel analyses. They show
that perceived traffic stress is associated with both gen-
eral health status and depression in multilevel models,
with people reporting traffic stress having lower health
status and more depressive symptoms.

In this paper, we aim at showing the utility of mul-
tilevel analysis for understanding the spatial aspects of
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road safety, and more particularly to show how far the
characteristics of space (environment and infrastructure)
can influence the location of accidents at different levels
of measurements in a periurban environment. By doing
so we expect to partly solve some data aggregation prob-
lems, well-known in spatial analysis13,14 as well as in road
accident analysis15,16. The analysis is here conducted on
data from the suburbs of Brussels (southern periphery);
the modelling results are interpreted in terms of opera-
tional results and are also compared to those obtained by
means of a more “classical” logistic regression3.

This paper is organised as follows. The model is
described in Section 2 and choices related to the data are
discussed in Section 3. Empirical results are reported in
Section 4. Two levels of aggregation are considered: the
hectometre (100m) of road and the commune; we aim at
understanding why accidents are concentrated in some
hectometres and why these hectometres are located in
specific communal environments. Our conclusions and
discussion are to be found in Section 5.

2. MULTILEVEL ANALYSIS

Let us first justify our modelling choices by briefly
defining the type of model (Section 2.1), its advantages
in terms of accident modelling (Section 2.2) as well as
the methods used for estimating the parameters (Section
2.3). We refer to the literature for further model defini-
tion and formulation6,7,9,17,18.

2.1 Definition
Multilevel modelling (MLM) is a type of regression

that has mainly been developed since the 1980s; it is de-
signed to handle hierarchical and clustered data. Such data
involve group effects on individuals, which may not be
assessed validly by traditional statistical techniques.  That
is, when grouping is present, observations within a group
are often more similar than would be predicted on a
pooled-data basis, and hence the assumption of indepen-
dence of observations is violated. MLM uses variables
at several levels of aggregation to adjust the regression
of the base-level dependent variables on the base-level
independent variables. In our case, for instance, we could
predict accident occurrence from the characteristics of the
hectometres or from larger environments such as com-
munes. MLM is related to structural equation modelling
in that it fits regression equations to the data, then tests
alternative models using a likelihood ratio test.

MLM specifies the expected direct effects of vari-
ables on each other within any one level, and cross-level
interaction effects between variables located at different
levels. Hence, mediating mechanisms are postulated; they
allow variables at one level to influence variables at an-
other level (e.g. better road infrastructure may influence
road-user behaviour and hence prevent accidents at places
other than that where the road enhancement has been ef-
fected). MLM tests multilevel theories statistically, by si-
multaneously modelling variables at different levels
without having recourse to aggregation or disaggregation.
In our case, the global problem is to model the relation-
ship between the place of an accident and the context in
which it occurs. We hence aim to detect the amount of
context contribution and its effect on the total variation
of the “individual behaviour”, and to identify which
macro characteristics are responsible for the context ef-
fect. This means conceptually introducing a multilevel
approach in which road accidents are grouped together
at different spatial levels; in our case, variables from two
levels will be jointly analysed in a unified framework.

The multilevel model is therefore a model with a
single dependent variable (Y) measured at the base level
(e.g. the accidents are taken individually). As in ordinary
least squares (OLS) regression, there may be one or more
independent variables collected at the base level. In addi-
tion, there will be at least one broader level of aggrega-
tion, with at least one explanatory variable (for instance,
the environment or the socio-economic characteristics of
the ward). In an OLS model, base-level data are analysed
for all groups pooled together (e.g. all hectometres, all
communes). In a MLM, the regression is performed sepa-
rately for each group. This produces different regression
coefficients and different intercepts (e.g. for each black
zone or each commune) and also explains why MLMs are
called “random coefficient models”. Such models usually
use maximum likelihood algorithms to estimate the param-
eters (coefficients) (see http://www2.chass.ncsu.edu/
garson/pa765/multilevel.htm).

Let us briefly summarise the formulation. Yij is the
variable to be explained. We consider here a model at two
levels of observation (see Section 2.2): the hectometre i
(Level 1) localised in a municipality j (Level 2). The gen-
eral shape of the linear model includes an explanatory
variable at Level 1 related to the hectometre (Xi), and a
contextual variable at Level 2 related to the commune
(municipality) and denoted Zj. Then

Yij = β0+βi Xi+ΓjZj (µ0j+µij∗Xij+εij)
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where β0+βiXi+Γj Zj is the fixed part of the model
and (µ0j+µij∗Xij+εij) is the random part. β0 is the inter-
cept. β i is the angular coefficient of the right-hand side
of the regression; it is the coefficient of the explanatory
variables at Level 1 (Xi); Γj is the coefficient of the Level
2 explanatory variable (Zj). Error terms (residuals) are
associated with β0 and βi at the contextual level (µ0j and
µij); they represent the deviation of the municipality j
from the average coefficient. These contextual residuals
are assumed to follow a normal distribution law with null
averages, variances σ0µ

2 and σiµ
2 and covariance σ0iµ .

Level 1 residuals (εij) have a null-average and equal σ0ε
2

variances. Hence, this formulation allows every munici-
pality j to have its own constant (β0) and angular coeffi-
cient (βi). This heterogeneity of the regression coefficients
between municipalities can later be tested and explained
by Level 1 and Level 2 variables. In other words, the out-
puts of a multilevel model include: (1) a fixed part con-
taining the regression coefficients and the corresponding
p-value for the significance levels, at Level 1, Level 2,
and for the cross-level interactions; (2) a random part con-
taining regression coefficients and p-values for estimat-
ing the variances of Level 1 variables and intercepts; and
(3) standardised (beta) coefficients which, as in OLS re-
gression, allow us to compare the relative importance of
the independent variables and interactions. Most software
packages also produce a measure of deviance.

2.2 Advantages of spatial analysis
Two types of errors are avoided when different lev-

els of aggregation are considered simultaneously6,19-21: the
ecological error which consists of using a global aggre-
gated statistical measure to reveal individual behaviour;
and the atomist error, which considers the characteris-
tics of the individual but ignores the context in which the
human behaviour occurs. This is also true for road acci-
dents: indeed it seems fallacious to isolate the accident
from its environment, or the society in which it occurred.
The purpose of this paper is to determine the direct ef-
fect of the explanatory variables measured at a low level
of aggregation and at a higher level of aggregation, and
to see if the explanatory variables at the aggregated level
moderate the relationships occurring at the individual
level, or vice versa.

Levels of analysis are often hierarchically organised:
items at one level interact and create a higher homoge-
neity8. This hierarchical structure leads to a correlation
of the observations that violates the hypothesis of the in-
dependence of residuals (classical regression techniques)
and leads to an underestimation of the standard deviations

of the regression coefficients. MLMs take this correla-
tion into account in the estimation of the standard devia-
tions of the regression coefficients by including terms of
error at the contextual level. With regard to our study,
this dependence is spatial and means that the observations
supply less information than if they were randomly dis-
tributed, as is assumed in the OLS method22.

Additional advantages of MLM are: (1) regression
coefficients are specific to each level of analysis thanks
to the contextual residuals; (2) it is possible to test
whether the variance in the contextual terms of error is
significantly different from 0 (likelihood tests); (3) coef-
ficients of determination (R2) can be computed for each
level of analysis by comparing the residual variances with
the variances of an “empty model” (without explanatory
variable) for each level; and (4) it is possible to attribute
the residual variance of the classical multiple regression
to various levels of analysis6,10. The assumptions for the
application of MLMs are in general less restrictive than
for more traditional regression techniques6,7,9,10; the main
difficulty with MLMs is the definition of the hierarchi-
cal levels of observation and the associated variables (see
Section 3.2).

2.3 Estimating the parameters
Homoscedasticity (equal variances) is often violated

in hierarchical situations: OLS techniques are hence in-
appropriate. Multilevel linear models are often best esti-
mated by the Newton-Raphson algorithm that is based on
maximum likelihood and generalised least squares. The
restricted maximum likelihood method is often used. The
values of the regression coefficients are first computed
on the basis of the first analysis of the matrix of variance-
covariance. The matrix is then re-estimated, using the first
values of the coefficients. Finally, the estimation of the
coefficients is improved by the new variance-covariance
matrix until convergence. In this way, the fixed and ran-
dom parts of the model are more effectively estimated
than with OLS.

Several software packages, such as HLM and MlwiN,
are available23,24.  SAS was used (Proc Mixed, Proc
Nlmixed) for the research reported in this paper; this pack-
age enables the more classic regression models to be con-
sidered as well as the hierarchical formulations. Several
models can be implemented with Proc Mixed: simple ran-
dom-effects only, simple mixed with a single fixed and
random effect, split-plot, multilocation, repeated mea-
sures, analysis of covariance, random coefficients, and
spatial correlation.
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3. METHODOLOGICAL CHOICES

3.1 Road safety in the studied area
Brussels is the capital city of Belgium, located in

the centre of the country and containing approximately
1 million inhabitants. As in most urban areas, the city
sprawls far beyond its administrative boundaries. Walloon
Brabant corresponds to an administrative entity (province)
located in the south of the city; it is mainly peri-urban
but its landscape results from its historical evolution. Up
to the 18th century, it was mainly rural, with many small
villages. During the 19th century, industries located in the
west (ironworks) and centre (paper mills). Railways and
better roads later increased the accessibility. In the first
half of the 20th century, industries started closing one af-
ter the other. In the sixties, the region was increasingly
polarised by Brussels: as in many European cities, people
started to move from the centre of Brussels to the coun-
tryside, while keeping their jobs in the city. Later on a
university was created in Louvain-la-Neuve and several
industrial parks were planned all over the area. Hence,
the southern periphery of Brussels is now characterised
by old villages and small towns, a new town and many
allotments, old industrial locations as well as new planned
ones (industrial parks), highly urbanised communes close
to Brussels as well as more residential areas, woods and
agriculture as well as employment and commercial cen-
tres. The result is a mosaic of landscapes, a polynuclear
structure and quite an interesting spatial pattern25,26.  Our
studied area is hence by definition periurban; its particu-
lar structure makes it quite interesting as links between
urban sprawl, travel practises and road safety have been
little dealt within the literature27.

In Belgium, any road accident that occurs on a pub-
lic road and that involves casualties must be officially re-
ported.  Location is accurately known on numbered roads:
there is a stone marker every hectometre (100 meters);
numbered roads are motorways, national and provincial
roads linking towns together. On other roads, location is
identified by postal addresses that are often less accurate.
This analysis is limited to accidents with casualties on
numbered roads; the hectometre is the smallest spatial
unit for which accident data are spatially and officially
available.

Walloon Brabant has 460.4km of numbered roads
including 37.7km of motorway. In this paper, a black zone
is defined by means of local spatial autocorrelation indi-
ces2,28,29 as a set of contiguous hectometres with a high
number of accidents. Black zones vary in length and in-

tensity, and some black zones may include a hectometre
with no or very few accidents. These black zones char-
cterise the same places from year to year30, despite the
many socio-economic changes in this studied area. 47%
of the road hectometres did not register any accidents.
Black zones represent 38% of the total number of acci-
dents but only 12% of the total number of hectometres.
In this paper, the period under study is 1998-2000, a pe-
riod long enough to minimise random fluctuations, but
short enough to limit changes in road traffic conditions.
Some 2,363 accidents were registered on numbered roads
during this period; in total, 1,388 hectometres out of 4,604
experienced at least one accident with casualties.

3.2 Levels of analysis and dependent variables
The definition of the hierarchical levels is not as

easy as for some topics in human sciences. It is a com-
promise between the significance and the availability of
the data.

Ideally, accidents should be considered as the first
level of analysis. However, accident data are collected by
hectometre (no GPS was available). Moreover, most
environmental variables are also only available for
hectometres or segments of roads rather than for pinpoint
locations on the road. Let us here add that some environ-
mental characteristics are collected at the time and place
of an accident and are reported on the statistical form
filled in for each accident with casualties. These could
have been used for characterising the places at which ac-
cidents took place, but their quality is doubtful31 and we
do not have any comparable information about places
where no accidents occurred. Hence the lowest aggre-
gated level of analysis used here is the hectometre.

Initially, we decided to take the road segment (sev-
eral hectometres long) as the second level of analysis.
However, it was not easy to choose the “best” length for
this segment and to justify it. Thresholds would have been
quite artificial and such segmentation does not correspond
to any official definition; explanatory data are not avail-
able at this level, and they would have had to be a com-
bination of data available at the hectometre level. Hence,
the municipality j (commune) was chosen as the second
level of analysis. It is not directly related to the road net-
work itself, but to its global environment.  A lot of data
are available at this level of administrative aggregation,
which corresponds quite well to mobility patterns in Bel-
gium.

Three dependent variables are used and modelled
separately: Y1 takes the value 1 when a hectometre be-
longs to a black zone and 0 otherwise. It enables us to
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understand why some hectometres are more dangerous
than others. Y2 is the total number of accidents observed
in each hectometre of road, and Y3 is a measure of the
risk of accident, roughly estimated as the total number
of accidents divided by the average daily traffic intensity.
Y2 has the advantage of giving the real number of acci-
dents: some hectometres can belong to a black zone (Y1)
without any accidents being recording2, and, on the con-
trary, a hectometre with several accidents can be sur-
rounded by hectometres with no accidents and hence not
belong to a black zone. The absolute number of accidents
(Y2) is interesting for some public authorities (such as the
emergency services), while for others, the relative num-
ber (Y3) is important. For each Y variable, the situation on
motorways is modelled separately because traffic has a
different structure (two separate lanes, etc.) on motorways.

3.3 Explanatory variables
The purpose here is to identify environmental con-

ditions associated with road safety/danger at two nested
levels of analysis. Most explanatory variables are selected
from official data bases (Belgian National Institute of Sta-
tistics, Ministry of Equipment and Transport) or con-
structed by means of G.I.S. techniques from official IGN
maps32; some of these variables are identical with (or
close to) those used by Flahaut3. They are briefly de-
scribed below.

Let us remind that our objective is not here to get
an exhaustive list of all the potential explanatory vari-
ables.  Our choice was guided by former published stud-
ies and constrained by data availability as well as the
structure of the studied area.  We are conscious that this
choice biases the results of the analysis and limits the con-
clusions.  However, most results presented hereunder are
consistent with former published results. There is indeed
a large number of papers in the literature justifying the
choice of roadway geometrics or the characteristics of the
adjacent environment of roads for explaining road acci-
dents occurrences.  Roadway geometrics include variables
such as the road type (functional or physical), the num-
ber of lanes and their width, the horizontal curvature and
the vertical grade33-36.  Spatial environment can be ap-
prehended in various ways : land use37, roadside features
(guardrail, bridges, etc.)38, residential development27,39,
human activities39,40, social disparities41,42.

Most explanatory variables used at Level 1 describe
the environment of the hectometre itself: the physical
characteristics of the road, land use or natural environ-
ment of the hectometre (see Table 1). Changes in envi-
ronmental conditions are also considered by means of

so-called “transition variables” which pinpoint road and
environmental discontinuities that could influence driv-
ers’ ability (or inability) to cope with changes. These vari-
ables are referenced by the absolute distance to the spatial
discontinuity and are recorded as _dist. If the change is
within the hectometre, the distance is recorded as 0
metres. A maximum of 200m is considered on numbered
roads and 300m on motorways. Information on traffic,
speed limits and the physical characteristics of the roads
(type of road, type of surface, adherence of the road,
presence of rutting or obstacles) were made available
by the Ministry of Equipment and Transport (MET).
Traffic density is measured by the 1999 average daily
number of vehicles in both directions, including all types
of vehicle, between 6 a.m. and 10 p.m. Traffic density is
measured for well-defined hectometres and extrapolated
to larger road segments, but is never known at the time
and place of the accident. It is a daily average. As in many
other countries, traffic is macroscopically measured43.
Land use variables refer to human activities or to mea-
surable characteristics of the physical environment (e.g.
% of area built-up, level of afforestation along the road at
a distance of 50m). These  are constructed on the basis
of 1:50,000 digital maps provided by the National Geo-
graphic Institute. Finally, the orientation, bends and slopes
of the roads are obtained from measurements made on
digitalised topographic maps by means of appropriate GIS
techniques. These characteristics of the roads can poten-
tially influence the visibility and the behaviour of road
users. Most variables are (0,1) variables.

At level 2, explanatory variables mainly pertain to
the socio-economic characteristics of the population liv-
ing, working or shopping in the commune (Census
data)41. Table 2 contains the definitions of the variables
used in this paper. As in most human geography stud-
ies, it is difficult to estimate the population at risk who
is really present in the municipality or traversing it. We
limited ourselves to proxies that are officially available.
Structural variables were also taken into account: the
level of urbanisation44 and the rurality (as expressed by
the ratio of agricultural areas to the total land area of a
municipality). We also expected that the morphology of
the built-up environment could influence accident oc-
currence; morphology was estimated by fractal dimen-
sion25,26. Let us remind that the fractal dimension (D)
describes the extent to which a mass (here the built-up
area) is concentrated within a zone. Fractal dimension is
not equal to density26. Thus for spatial mass distributions,
D can be interpreted as a measure of mass concentration
in a given area. It can be shown that a value of D close
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to 2.0 describes a fairly homogeneous distribution. The
lower the value of D, the more the mass is concentrated:
thus a dimension close to 0.0 corresponds to a concen-
tration of the mass in one isolated point (one farm in the
middle of fields), while the value 1.0 corresponds to a
line (houses along a road), but also characterises a hier-
archical spatial distribution of masses.  No value smaller

that 1.0 was obtained in this study. Such values would
refer to structures composed of a disconnected set of
points. It is possible that road safety is affected by
whether built-up areas are distributed homogeneously or
heterogeneously throughout the neighbourhood. D is here
measured by correlation25 and denoted DCORR.

Table 1 Explanatory variables at Level 1

Variables Description

Road use TRAFFIC Logarithm of the average daily volume of traffic (Source: MET)

VMAX Maximum speed limit (Source: MET)

VMAX_dist Distance to a change in speed limit (in meters): >200; 200; 100; 0 m and 300 m on
motorways. Written as VMAX(>200)_dist etc.

Physical LANES Number of lanes: (1) 1+1; (2) 2+2; (3) 2; (4) 3
characteristics LANES_dist Distance to a change in road type in terms of number of lanes: >200; 200; 100; 0 m and 300 m
of  the road on motorways. Written as LANES(100m)_dist etc.

SURFACE Type of surfacing (1) BE: concrete; (2) HFN: conventional asphalt;  (3) HOM: thin asphalt;
(4) HON: draining asphalt

SURFACE_dist Distance to a change in surfacing: >200; 200; 100; 0 m for numbered roads and 300 m on
motorways

RUT Presence (1) / absence (0) of ruts

JUNCT_dist Distance to major crossroad: >200; 200; 100; 0 m on numbered roads and >300 ; 300 m on
motorways

ADHERENCE Adherence of the road surface: (0) good or normal; (1) bad or very bad

PROX_ACCES Proximity (<300 m) to entry/exit. (0,1) On motorways only

BZONE Hectometre belonging (1) or not (0) to a black zone

Land-use BUILT Estimated % of built-up area (from the road to 50 m from it): <20; 20; 25; 30; 40; 50. Written as
Built30 etc.

BUILT_dist Distance to transition in density of built-up area (BUILT):  >200; 200; 100;  0 m (>300; 300 m on
motorways)

WOODS Estimated % of wooded area along the road (at 50 m): < 20; 20; 25;  30; 40; 50. Written as Woods30
etc.

FIRMS Proximity of firms or large supermarkets (50 m) (0,1)

OBSTA _dist Distance to an obstacle such as a bridge pillar: >200; 200; 100; 0 m (>300; 300 m on motorways)

 Landscape AGGLO Inside/outside an urban agglomeration (F1/F3 road sign)

DIRECTION Road segment direction: (1) Others (N-S); (2) E-W≤22.5°; (3) 22.5°<E-W45°

RELIEF At the top of a slope; at 100 m from the top; at the bottom of a slope; at 100m from the bottom; other

Table 2 Explanatory variables at Level 2

Variables Description

MIXITY Number of jobs/number of inhabitants in a commune in 2001 (= level of mixing of the activities and hence traffic).

ATTRACT (Numbers of jobs + number of inhabitants)/surface of the commune in 2001 (= attractivity of the commune)

EMPLOYDENS (Working population residing in a commune + population working in the commune) / total surface of the commune

MOBILITY Working population residing in commune i / Total resident population in i

ROADLENGTH Total number of hm of roads in the commune (logarithm)

URBE Level of urbanisation

DCORR Fractal dimension of the built-up area obtained by correlation

RURALITE Area devoted to agriculture in 2001 / total area (%)
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4. MODELLING RESULTS

Section 4.1 and Table 3 contain the results for ac-
cidents occurring on numbered roads (regional roads)
with the exception of motorways, which are reported in
Section 4.2 and Table 4. The three dependant variables
are analysed separately. The exploratory data analysis
conducted on the explanatory variables is not reported
here; it was mainly based on correlation coefficients and
odd ratios, and enabled the number of explanatory vari-
ables to be reduced and their “best” formulation to be se-
lected.

4.1 Accidents on numbered roads
Proc Nlmixed uses a non-linear formulation of the

model. It requires initial values for the parameters to be
specified, so that the model converges. Convergence is
due to the fact that maximum likelihood estimation is an
iterative algorithm which may require many runs before
reaching stable coefficient estimates. Our first estimate
was β0 = -2.05; this initial value was introduced into the
“empty” model (Table 3, Column 2). The intra-munici-
pal variance (Level 1) is an indicator of the variability
between hectometres, whereas the inter-municipalities
variance (Level 2) concerns the variability between mu-
nicipalities. The total residual variance of the empty model

was 7.77.   The intra-class correlation 2020

20

εµ

µ
µ σσ

σρ +=

indicates the proportion of the variance due to the com-
munes (Level 2); ρ here is equal to 24.95% (σ0µ

2 = 1.94).

For the hectometres (Level 1) 
2020

20

εµ

ε
ε σσ

σρ +=  = 75.05%

(σ0ε
2 = 5.83). The smaller the intra-class correlation,

the better the standard errors of the parameters are es-
timated11. Let us also mention the pseudo-coefficient
of determination (R2), which indicates the weight of the
explanatory variables at every level by comparing the
residual variances to those of the empty model
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R
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Pseudo R-squared (denoted R2) should not be compared
to the R2s obtained by OLS. There are analogous, but not
equivalent.

The empty model contains no explanatory variables.
It simply results in a partition of the total variation be-
tween the intra- and inter-level constituents. The purpose
is then to reduce these variances by introducing explana-

tory variables. The explanatory variables that make a sig-
nificant contribution to the equation related to Y1 (being
or not being part of a black zone) only explain 5.15% of
the variance (Table 3, Column 3). However the decom-
position by level of observation leads to a larger R2 at
the municipal level (R2

2 = 23.19%).  Let us here note that,
quite surprisingly, the variance observed at the hectometre
level (5.88) is almost the same than that observed in the
empty model (5.83). At this stage of the analysis, this is
not easy to explain. MLM models are perhaps not the best
way to model Y1.  Interpretation of the coefficients may
be meaningless.

Y2 is the total number of accidents observed on each
hectometre of road. Table 3 shows that its variability be-
tween communes is small (σ0µ

2= 0.0001; ρµ= 0.01%);
communes can therefore be considered as homogeneous
in this respect. Compared to the empty model, the X vari-
ables have a greater explanatory power at the municipal
level (R2

2 = 66.30%) than at the hectometre level (R2
1 =

9.07%). Several variables explain the variation of Y2, in-
cluding the quality of the adherence of the road surface
(ADHERENCE). We suspect the role of this variable to be
associated with users’ behaviour; given the many recent
technical improvements to motor vehicles, drivers may
take greater risks because they feel more confident when
driving vehicles equipped with these safety features even
in difficult conditions45. When adherence is not good,
road conditions seem not to be manageable by road us-
ers for one reason or another (weather conditions,
infrastructural or behavioural circumstances), leading to
an accident. As expected46,47, Y2 is also high when the
hectometre is located in the vicinity of a junction
(JUNCT_dist).  We know that better signalled intersections
are a short-term solution for avoiding black zones, with
roundabouts being a solution in the longer term.  Traffic
density (TRAFFIC) also has a significant positive influence
on Y2, confirming former results such as those recently
published by Hiselius48, Golob43 or Davis15. As expected,
the total number of accidents (Y2) is higher in urban ag-
glomerations (AGGLO), which also confirms the effect of
density and/or mobility27,43.  We see from Table 3 that
Y2 is once again higher close to places where driving
conditions change (LANES 0, 100_dist; VMAX 0_dist). These
latter are quite interesting because they identify road
discontinuities that are potentially dangerous: narrowing
of the road, agglomerations, etc.  We know from experi-
ence that better warning signs are an easy short-term so-
lution for reducing risks at these transition places47.
However, in the longer term, they should be accompa-
nied by changes in infrastructure and environment.
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Y3 is a simple measure of risk: the total number of
accidents observed in a hectometre of road divided by the
average daily traffic intensity. The scale effect is here due
to hectometres only. Some 21.34% of the variance is ex-
plained. This means that infrastructure and environment
play a limited but significant role in accident risk. Y3 is
also explained by distance to crossroads (JUNCT_dist), lo-
cation within urban agglomeration (AGGLO), bad adher-
ence of the road surface (ADHERENCE), built-up (BUILT30)
and wooded (WOODS25) environments. There is also an un-
expected negative effect of rutting (RUT) (β = -0.31): the
risk of accidents is small where rutting occurs. This might
be explained by the fact that, in the area we studied, rut-
ted roads often correspond to roads with dense traffic and

hence congestion. We know that congestion leads to more
damage-only accidents (fewer casualties). But rutted
roads may also correspond to small roads between ham-
lets with little traffic, where vehicles do not necessarily
adapt their speed. Variables measured at the municipal-
ity level have a very small but significant explanatory
power for the risk of accidents. However DCORR, which
is an index of urban morphology, plays an interesting
role: the greater the uniformity in the built space (no hi-
erarchy), the greater the risk of accidents. This is quite
an important and novel finding in terms of planning. Spe-
cific spatial organisations (morphologies) may affect the
relative speed of vehicles.  Moreover, the risk of acci-
dents also decreases when population density increases:

Table 3 MLM for accidents on numbered roads

Y1 Y2 Y3

Variables Empty Model MLM Empty Model MLM Empty Model MLM

β0 –2.05*** –13.71*** 0.21*** –1.97*** 0.47*** –1.47**

Level 1 variables

AGGLO 0.38*** 0.18***

TRAFFIC 1.52** 0.53***

VMAX (0m) _dist 0.19***

LANES(3) –0.75***

LANES (0m) _dist 0.34**

LANES(100m)_dist 0.31***

RUT –0.31**

JUNCT (0m) _dist 1.33*** 0.32** 2.15***

JUNCT(100m)_dist 0.35***

ADHERENCE 0.75*** 0.23*** 0.35***

BZONE 0.75***

BUILT30 0.32*** 0.54***

WOODS25 0.50*

FIRMS 0.47**

DIRECTION (3) –0.29**

Level 2 variables

EMPLOYDENS 2.64*** –0.97***

DCORR 2.82***

Variance σ0ε2 (level 1) 5.83 5.88 1.11 1.01 3.79 2.98

Variance σ0µ2 (level 2) 1.94 1.49 0.0003 0.0001 0.0002 0.0002

Total variance 7.77 7.37 1.11 1.0088 3.79 2.98

ρε 75.05% 79.78% 99.98% 99.99% 99.99% 99.99%

ρµ 24.95% 20.21% 0.02% 0.01% 0.01% 0.01%

R21 – – – 9.05% – 21.34%

R22 – 23.19% – 66.3% – –

R2total – 5.15% – 9.07% – 21.34%

***significant at 99.9%; ** significant at 99%; * significant at 95%
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the greater the density, the greater the activity and traf-
fic and hence congestion or speed limits. These latter re-
duce the risk of accidents; as already discussed49, this
should be taken into account when considering mobility
problems within urban areas.

We can here conclude that the utility of MLM for
modelling the occurrence of accidents is limited: effects
of scale are small. In all cases, one level of analysis is
predominant, although this may differ for different de-
pendent variables. In the model for the number of acci-
dents (Y2), the significant variables explain 66.3% of the
variance at the level of the commune, whereas in the
model for the risk of accidents (Y3), the explanatory vari-
ables account for 21.34% of the variance at the level of
the hectometre. In the first model, for the occurrence of
black spots (Y1), the variation is mainly at the level of
the hectometre, but the explanatory variables account for
23.19% of the variance at the municipal level. The ef-
fect of scale in this case is shared between hectometres
(79.78%) and municipalities (20.21%). Although MLM
is known to be helpful in revealing differences in vari-
ance among units of analysis at different levels, it is less
interesting than expected in this frame of application (see
Section 5).

The explanatory variables that are significant in all
three models are proximity to crossroads (JUNCT_dist), the
adherence of the road (ADHERENCE), and measures of traf-
fic density (TRAFFIC or EMPLOYDENS). This confirms results
of other published studies (see references mentioned). The
quality of the road surface is a risk factor that deserves
particular attention in the maintenance of roads, especially
in a peri-urban context. At the municipal level the risk
of accidents increases with the urban morphological in-
dicator (DCORR) and decreases with population density.

4.2 Accidents on motorways
Given the characteristics of motorway traffic (sepa-

rate lanes, few entries/exists, minimum/maximum speed
conditions, etc.) and the specificities of road accidents on
this kind of road, models were computed separately for
this type of road accidents. The results are given in Table
4.

The first analysis, for the existence of a black spot
(Y1), shows an increase in the total residual variance for
the MLM compared to the empty model (from 17.81 to
55.46) (Table 4, Columns 2 and 3); this means that, over-
all, the significant explanatory variables do not improve
the explanation of whether or not a particular hectometre
is part of a black zones of the motorway. The fact that a
hectometre belongs to a black zone is not to be explained

by the here used explanatory environmental variables.
The model related to the number of accidents by

hectometre (Y2) is reported in Columns 4 and 5 of Table
4. The introduction of explanatory variables in the model
now reduces the total variance (from 1.43 to 1.23); this
is exclusively due to Level 1 variables (R2

1 = 14.24%).
Hence, the effect of scale is here mainly due to the
hectometres. This is quite obvious for motorways where
entries/exists are sparse compared to the scale of the com-
munes. Let us have a look at the explanatory variables.
Traffic density has a positive relationship to accidents:
the larger the traffic volume, the larger the number of ac-
cidents. We know that his relationship is true on aver-
age: traffic varies with the time of the day leading to
congestion at some periods. Let us remember that acci-
dents on motorways often only involve one road user and
are often associated with a loss of control and/or travel-
ling in excess of the speed limit38,50,51, which occur when
traffic is not dense (often at night). Distance to a change
in surface (SURFACE200m_dist), distance to a change in
maximum speed limit (VMAX 0 and 100m_dist) are once
again sources of changes in road behaviour; they should
be the focus of planners’ attention, as they normally cor-
respond to roadworks on motorways or places close to
cities. Better road signs avoid these situations; speed lim-
its signs are indeed a safety measure and their use has
already often been debated52. The nearness of firms/de-
partment stores (FIRMS) is also a risk factor at the entrance
of cities; this risk factor could be avoided by better land
use/infrastructure planning. Surfacing of type HFN and
the variable BUILT<20 have negative coefficients: asphalt
with the conventional texture and sparsely built-up envi-
ronments are factors of road safety rather than danger.

Modelling of the risk of accidents (Y3) is reported
in Columns 6 and 7 of Table 4. It turns out that the ef-
fect of scale is once again only due to hectometres, and
that 13.14% of the variance is explained by the explana-
tory variables introduced. The MLM adds very little in
this case because the variance associated with one of the
levels (here Level 2) is almost equal to 0. Significant ex-
planatory variables are the distance to a maximum speed
(VMAX 0 or 100_dist), membership of the hectometre of
a black zone (BZONE) and the type of surfacing (HFN).

Hence, on motorways, Level 2 is useless in model-
ling Y2 and Y3 because variables describing the munici-
pal level only apply to those sections of the motorways
that are located near Brussels. It might have been better
to choose another contextual environment because the
municipal effect only represents a small part of the ef-
fects of scale on motorways. For Y1, the effects of scale
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are shared between hectometres (54.35%) and municipali-
ties (45.65%), but no variable explains the total variation,
which increases when explanatory variables are intro-
duced. None of the explanatory variables recurs in each
model, but each is useful in defining sensitive places on
motorways (such as, for example, the zones with differ-
ent speed limits, the changes in type of road, the surfac-
ing of roads, etc.). To sum up, when modelling the
presence of a hectometre in a black zone on motorways
(Y1), variations are shared in a more or less equivalent
way between hectometres (ρε = 54.35%) and municipali-
ties (ρµ = 45.65%). The introduction of explanatory vari-
ables does not improve the predictive power of the model.
When modelling the number of accidents (Y2), the varia-
tion occurs at the level of the hectometres and 14.24%
(R2

total) is explained. When the dependent variable is the
number of accidents divided by the average traffic inten-
sity (Y3), the effect of scale is only due to hectometres

but only 13.14% of the total variation is explained.

4.3 Comparing MLM to logistic regression results
Multilevel results are not really comparable to other

regression results13,14. MLM relies on complex, particu-
lar distributions of relationships across and within levels.
MLM outcomes are hence less general since each best-fit-
ting model may be very specific to the dataset used. Let
us here roughly compare Y1 modelling results obtained
on numbered roads with those obtained by Flahaut3 by
means of a more classical logistic regression (Table 5)
using the same area of study and almost (but not exactly)
the same explanatory variables. We see that (1) infrastruc-
ture and land-use have a smaller power of explanation in
the MLM model (smaller pseudo R2), and that (2) the ex-
planatory effect of the variables is only slightly differ-
ent. Similar effects are to be found for traffic density,
crossroads, adherence, built-up areas, and proximity of

Table 4 MLM for accidents on motorways

Y1 Y2 Y3

Variables Empty Model MLM Empty Model MLM Empty Model MLM

β0 –5.27** 92.91** 0.75*** –11.22*** 1.54*** 4.85*

Level 1 variables

TRAFFIC –21.47** 2.55***

VMAX (0m)_dist 2.38*** 4.07***

VMAX (100m) _dist 1.83** 3.71**

LANES(4) –2.44** 3.74***

SURFACE (HFN) –0.41*** –0.49*

SURFACE(200m)_dist 1.06**

PROX_ACCES (300m) 1.29**

BZONE 1.70***

BUILT (20%) –2.63**

FIRMS 2.46** 0.48*

Level 2 variables

EMPLOYDENS 7.19*

MIXITY –5.31**

ATTRACT –6.88*

Variance σ0ε2 (niv 1) 12.02 30.14 1.43 1.23 4.78 4.15

Variance σ0µ2 (niv 2) 5.79 25.32 0.0002 0.0002 0.0002 0

Total variance 17.81 55.46 1.43 1.23 4.78 4.15

ρε 67.47% 54.35% 99.98% 99.98% 99.96% 100%

ρµ 32.51% 45.65% 0.02% 0.02% 0.04% –

R21 – – – 14.24% – 13.14%

R22 – – – – – –

R2total – – – 14.24% – 13.14%

***significant at 99.9%; ** significant at 99%; * significant at 95%
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firms/department stores. MLM modelling adds variables
such as the orientation of the roads and the number of
lanes; at the municipal level, MLM adds population den-
sity, which confirms other density effects measured at the
hectometre level and other published papers already men-
tioned. In the logistic model, distances to changes in
speed limit or in the number of lanes as well as the type
of road surface play a more determining role also con-
firming the importance of speed variance.

istics of the studied area as well as recent published re-
sults. Due to the nature of the road accident and data limi-
tations, only two levels of analysis were taken into
account: the hectometre and the commune. In spite of
these many limitations, we can conclude that:
(1) MLM enables the relative importance of spatial lev-

els in the explanatory process to be assessed. In our
case, the commune has, on average, less importance
in the explanation than the hectometre: road accidents
occur at micro-locations (hm) which can be analysed
in a broader spatial context, but this context does not
seem to correspond to the commune. If communes
are useful official statistical and administrative units,
they vary in size and shape (modifiable areal unit
problem) and are not suitable for explaining the lo-
cations and spatial concentrations of road accidents.
This level is not appropriate for taking into account
the complex relationships in which a car/road user is
involved in an accident. Unfortunately, in road acci-
dent analysis, the choice of the spatial level of ob-
servation is not as straightforward as in human and
behavioural sciences. In both road accident and mo-
bility analyses, there is often a compromise between
data availability and meaning. In this case hectometres
and communes were the only possible choices. MLM
for road accidents is not straightforward to apply for
spatial analysis.

(2) If the level of spatial explanation is not high, it is
however significant and corroborates former pub-
lished results. Environment and infrastructure explain
between 5% and 21% of the total observed variation
in road accidents in Brabant Walloon. We are con-
scious that our models are mis-specified: we didn’t
take into account the many other factors that could
interact (user behaviour, mobility patterns, etc.).
Given these results, the physical characteristics of the
road, as well as its environment, should be better and
further integrated into safety and land-use policies.
Let us here however add that the assessment of en-
vironmental accident factors can, however, been dis-
cussed: circumstances can be present and regarded as
risk factors, but not necessarily as accident factors
and causes36.

(3) Three different dependent variables were analysed:
whether or not a hectometre belongs to a black zone;
the number of accidents per hectometre; and the risk
of accidents, defined as the number of accidents di-
vided by the average traffic volume. Each Y variable
has a specific meaning for police forces, emergency
services or road engineers/planners. In our analysis,

Table 5 Comparing multilevel and logistic modelling
of Y1 on numbered roads

Variables Multilevel model Logistic model

TRAFFIC ++ +++

VMAX (0m) _dist +++

LANES ---

LANES (0m) _dist                                                           +

SURFACE ++

 JUNCT (0m) _dist +++ +++

ADHERENCE +++ +

BUILT (30%) +++ +++

FIRMS ++ +++

DIRECTION --

EMPLOYDENS (level 2) +++

(+ a positive relationship; - a negative relationship.

+++/---significant at 99.9%; ++/-- significant at 99%; +/- significant at 95%).

Operationally, both modelling approaches lead to
specific results, but, on average, road accidents data in
Brabant Walloon seem to have a strong spatial structure
that comes through in both modelling procedures. Results
are quite stable, confirm common practise and should
hence be better integrated into land use planning and road
infrastructure enhancement policies.

5. CONCLUSIONS

The importance of MLM in understanding contex-
tual effects on road safety lies in its ability to meaning-
fully specify the latent structure of relationships, which
involve individuals and their environments. This paper
considered the spatial occurrence of road accidents by
means of MLM. Three dependant variables were studied
separately. Explanatory components were limited to in-
frastructure and environment; the choice of the data was
constrained by the availability of the data, the character-
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each model has also a specific form, with a differ-
ence combination of independent variables.

(4) Most explanatory variables are associated with
hectometres. Many are related to changes in road con-
ditions. The importance of these changes in road con-
ditions in the explanation reveals the inability of the
road user to adapt his or her behaviour to changes in
road conditions and road infrastructure53. In-depth
analysis of each sub-type of accident should increase
our understanding of each type of circumstance, but
this is far beyond the scope of this paper. All these
associations show that spatial concentrations of road
accidents often correspond to places where improve-
ments could be made in terms of road design, sig-
nalling and land-use planning. This corroborates
previous results on road accidents and road geom-
etry33,34,47,54.

(5) The introduction of a morphological index (fractal di-
mension) is quite novel in measuring land use and
more particularly in explaining road safety. Further
analyses will be performed with this variable. In this
paper we showed that homogeneity in texture leads
to greater danger. Specific spatial organisation (mor-
phology) may affect the relative speed of vehicles as
well as the mobility patterns. This should be taken
into consideration when considering safety and mo-
bility problems within urbanised areas.

(6) Multilevel results are not really comparable to other
regression results. MLM outcomes are less general
since each best-fitting model may be very specific for
the dataset used. In our case, logistic regression seems
to be easier to use and could be extended to cope with
autocorrelation3. Other analytical methods, such as a
weighted geographic regression21 (which is based on
the hypothesis that the variations between variables
measured in different places cannot be constant in the
space), may however also be interesting to use. In-
stead of considering the local variations as averages
and as unobservable, weighted regression allows us
to measure local variations and to map them. How-
ever, the quality of the spatial data for this type of
analysis is a strong preliminary condition.

The findings of this paper are both suggestive and
limited in that they are based on only one data set, and
only consider the environment and infrastructure as ex-
planatory variables.  Our modelling results depend
strongly upon the many choices made, and these are
strongly related to data availability. Neither the social
characteristics of the road users nor the technical char-

acteristics of vehicles are considered here. The interac-
tions between social, technical and spatial variables are
not taken into account. Our paper shows the importance
of the hectometre as a basic spatial unit and the limited
usefulness of multilevel models in analysing road acci-
dent locations. Other statistical techniques may be better
suited to this task. Spatial concentrations of accidents are
characterised by specific accident circumstances, which
require different counter-measures to reduce their num-
ber (e.g. improvements in terms of road design, signalling,
and local environment). There is no unique combination
of characteristics associated with road accident locations:
it is a complex phenomenon of which only a very few
aspects have been considered here.
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